Advanced Topics on Highly Sophisticated Materials (物性制御学特論)

- Coherent THz wave generation and its application for biomedical and structural defects -

Yutaka Oyama

Dep. MS&E, Graduate School of Eng. Tohoku Univ. ,Sendai, Japan

oyama@material.tohoku.ac.jp

Background & Motivations

THz region (far-infrared region)

- •0.1-10 THz, 3 mm-30 µm
- between millimetre waves and infrared
- vibrational modes in macro-molecule

Applications

- spectral measurement (**fingerprint**) and imaging of macro-molecules (*e.g.*, DNA)
- detection and treatment of cancer tissue (bio medical)
- •Harmless & non destructive inspection
- Security

etc.

Very wide variety of important applications

RADIO WAVE & LIGHT SOURCES DEVELOPED

THz wave and its application

Characteristics and functions of our THz source (GaP)

- High power ~1.5W(max) coherent source
- Wide frequency tunable (0.1-7THz)
- High purity /coherent source (Δf~0.1GHz)
- Compact source (1m x 1m: 0.3m x 0.3m)
- Full automated

Application of THz wave

- ◆ Bio-medical ◆ Nondestructive inspection (Harmless)
- ♦ Security ♦ High speed THz communication

THz wave generation from bulk GaP

GaP DFG, FTIR and TDS (time domain spectroscopy)

FTIR white light sourceTDS white light source (femto sec. laser)IIFrom time domain to frequency domain

By Fourier transform

THz spectra of glucose (by Cr:F-source system)

The effects of hydration (hydrogen bonding)

α-D-glucose has changed to monohydrate stored in normal atmosphere

The reaction is reversible by drying in vacuum

CW THz wave generation by LD

LD (laser diode) excited CW THz wave

Ultra narrow line width THz light

DEVELOPMENT OF THz SOURCES

THz wave generation

An approach from light wave

Application of phonon-plariton in semiconductor crystal

proposal 1963 J.Nishizawa

Difference-frequency generation (DFG) using near-infrared light

realized 1983 J.Nishizawa & K.Suto

GaP crystal

GaSe crystal

High power, coherent and wide frequency tunable THz wave generation

Nonlinear optical (NLO) crystals

THz generation from various semiconductor crystals

Vibration of organic molecules

Inter-molecular interaction

- hydrogen bonding
- van der Waals forces

local vibrations

Bio-medical Application

Non destructive inspection

hv~

Room temp.

Human body temp.

THz vibration modes (Gaussian03)

γ-ray induced defects in Glucose

Inter molecular defects

Lower resonance vibration frequency

	1	2	3	4	5	6	Ø	8
Not irradiated	1.455	2.595	2.772	3.060	3.419	3.915	4.052	4.698
γ-ray irradiated	1.455	2.590	2.763	3.043	3.414	3.902	4.032	4.687
frequency shift	0	-5GHz	-9GHz	-17GHz	-5GHz	-13GHz	-20GHz	-11GHz

THz spectral imaging of liver cancer tissue

2.4THz

3.7THz

THz spectra of DNA/RNA bases

Crystal Structures of Sulfanilamide: Views from b Axes

Terahertz Absorption Spectra of Sulfanilamide: Polymorphic forms of medicines

The Different Polymorphic Forms of Sulfanilamide

Sulfanilamide is known to exist in three polymorphic crystalline forms.

Thermodynamic Stability: $\gamma < \alpha < \beta$

THz spectra of L-asparagine-L-aspartic acid solid solution

THz wave and its application

Characteristics and functions of our THz source (GaP)

- High power ~1.5W(max) coherent source
- Wide frequency tunable (0.1-7THz)
- High purity /coherent source (Δf~0.1GHz)
- Compact source (1m x 1m: 0.3m x 0.3m)
- Full automated

Application of THz wave

- ◆ Bio-medical ◆ Nondestructive inspection (Harmless)
- ♦ Security ♦ High speed THz communication

OPERATION PRINCIPLE OF MM-WAVE TUNNETT

Invented by Prof. J-I Nishizawa

Oscillation characteristics of TUNNETT (spectrum analyzer)

Cavity: WR-03(J-band), 174-325 GHz

Oscillation characteristics of TUNNETT (Fabry-Perot)

430 - 510 GHz CW, fundamental mode

TUNNETT IMAGING SYSTEM

Pulse generator

With a Φ 1.5mm aperture the highest resolution ~ 1mm (wavelength ~ 1.5mm)

TUNEETT Performance

TUNEETT Oscillator

y Size	115 ×30 ×60mm
Waveguide Resomators	WR- 2.2:0.559 × 0.279 mm (rectangular)
Polarization	Linear (rectangular waveguide)

100

THz Detector in Imaging System

Detector	Si-Bolometer	SBD detector	Thermometer
Sensitive	High (>10 times higher than SBD)	Medium (10 times higher than thermometer)	Low
Advantage	High sensitive none-polarized	Compact Polarization changeable	Large receiving area
Disadvantage	Need cooling (4K Helium)		Low sensitive

Images Demonstration

So not only special structure (fiber structure, knot)can be seen, but also WATER DISTRIBUTION in WOOD is

Result

Adhesive defect imaging between ceramic tile and wall

Water diffusion into concrete

Colorful animation of water diffusion in 1 hour Concrete thickness= 10mm

Sample picture

Water diffusion in concrete crack

Water diffuses faster in crack than ordinary, This can be used in crack inspection Water can be served as "enhancer" for crack inspection

Stain distribution imaging under coating of coated steel (reflection imaging)

visible

Plastic coating thickness 0.2mm

Plastic coating thickness 1.0mm

THz imaging

Outline

Analysis of GaSe growth mechanism

GaSe solution growth by temperature difference method Under controlled vapor pressure

Evaluation of optical aspects PL, NIR & THz spectroscopy Evaluation of defects and dislocations XRD

Application for THz wave generation DFG via collinear phase matching

Crystal Growth of GaSe (conventional)

- ~Problems of Bridgeman technique ~
- Mechanical disturbance during crystal growth Introduction of defects and dislocations by thermal stress High Se vapor pressure (15atm) at melting point (938℃) High temperature growth: Point defect density is high

Reduction of THz-wave power

Experimental procedure

Growth conditions

Growth temperature: $530 \sim 590^{\circ}C$ Temperature gradient: $15 \sim 26^{\circ}C/cm$ Applied Se vapor pressure: 7.74×10^{-7} , 0.00104, 7.75 TorrGrowth time::: $7 \sim 32$ days

Evaluation

Surface morphology by optical microscope X-ray diffraction analysis Photoluminescence (PL) excitation : Ar⁺ laser Absorption spectra in NIR and THz-frequency region

THz generation via DFG (collinear phase matching)

GaP THz spectrometer (double beam configuration) For THz absorption spectroscopy

Coherent THz wave: 0.1~7THz (maximum power ~1.5W)

with $\Delta f \sim 100 MHz$

Experimental setup for THz generation

sample: undoped-GaSe(001): thickness of 2 mm

beams: pump:OPO(optical parametric oscillator)

λ:1042nm-1064nm, power ~3mJ, linewidth 6GHz, pulse duration 6ns signal: Nd:YAG laser

λ: 1064.2nm, power ~3mJ, linewidth 90MHz, pulse duration 11ns
 detector: liquid-helium-cooled Si bolometer

Surface morphology

100µm

(a) Triangular islands on GaSe surface

(b) Surface of GaSe grown under Se vapor pressure (7.75Torr)

Observed triangular islands on GaSe surface Flat surface of GaSe grown under Se vapor

X-ray diffraction pattern

Crysatal phase and polytype

Hexagonal & type

Dominant diffraction peak of c plane

Growth of GaSe single crystal phase with (001) plane

77K-PL spectra of GaSe samples grown under different Se pressures

Excitation intensity dependence of 77K-PL spectra

NIR Absorption spectra

Optical Band gap energy of TDM-CVP grown crystals

Band gap of TDM-CVP growth samples → ε-GaSe band gap at RT (2.004eV)

THz Absorption spectra

Bridgeman grown sample is also shown as a reference

GaSe crystal grown by CVP-TDM

Improved absorption coefficient in THz frequency region

Experimental setup for THz generation

•sample: undoped-GaSe(001): thickness of 2 mm

•beams: pump:OPO(optical parametric oscillator)

 λ :1042nm – 1064nm, power ~ 3mJ, linewidth 6GHz, pulse duration 6ns signal: Nd:YAG laser

λ: 1064.2nm, power ~3mJ, linewidth 90MHz, pulse duration 11ns
·detector: 4K-Si bolometer

Phase matching condition

THz-generation: wave output power

For type-*oee* collinear phase-matched DFG, the effective nonlinear optical efficiency depends on the PM (θ) and azimuthal (φ) angles as $d_{\text{eff}} = d_{22}\cos^2\theta\cos^2\varphi$

o and *e* are the ordinary and extraordinary polarization of the beams inside the crystal.

THz-wave output power in THz region

In the frequency below 1 THz, the absorption coefficient increased steeply, this may be due to free carrier absorption.*

Characteristics of generated THz-waves

Spatial distribution of THz-waves

Shifting the detector with $\varphi 2 \text{ mm}$ resolution: 0.25 mm distance: 28 cm, 58 cm

The-wave linewidth measurement

(measured frequency:1.765 THz)
Fabry-Perot interferometer
high reflection metal mesh mirror
R=97%(at 1THz)

Spatial distribution of the THz-wave

THz-wave elliptically propagates from the GaSe $qx = 2.1^{\circ}$ $qz = 3.7^{\circ}$

The distance between the GaSe crystal is 28 cm (a) and 58 cm (b).

^{● :} X-direction、▲ : Y-direction

Frequency and Linewidth

Fabry-Perot interferometer

linewidth of THz-wave 3.5 GHz(0.12 cm⁻¹)

suitable for source on spectral measurement with high resolution

CONCLUSION

- ε-type monocrystalline GaSe crystal growth by TDM-CVP
- Improved optical aspects in NIR & THz-frequency region (stoichiometry control via Se vapor pressure application)
 Successful coherent THz generation via DFG with collinear phase matching

Defect free NLO crystal (GaSe) via stoichiometry control

For high power & wide frequency tunable THz source

Report: submission deadline 8/Sep. 2010

to oyama@material.tohoku.ac.jp by PDF format.

Read journal paper on "sophisticated laser or mm-wave-related device, materials, phenomena and/or processing"

(published in 2010), and then prepare report on that article.

At shortest 1 - page your own opinion on article should be included in your report.

CONCLUSION

- *ɛ*-type monocrystalline GaSe crystal growth by TDM-CVP
- Improved optical aspects in NIR & THz-frequency region (stoichiometry control via Se vapor pressure application) Successful coherent THz generation via DFG with collinear phase matching

Report: submission deadline 📂 8/Sep. 2010

to oyama@material.tohoku.ac.jp by PDF format.

Read journal paper on "sophisticated laser or mm-wave-related device, materials, phenomena and/or processing"

(published in 2010), and then prepare report on that article.

At shortest 1-page your own opinion on article should be included in your report.